forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdescribe.py
368 lines (299 loc) · 10.2 KB
/
describe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
"""
Module responsible for execution of NDFrame.describe() method.
Method NDFrame.describe() delegates actual execution to function describe_ndframe().
"""
from __future__ import annotations
from abc import (
ABC,
abstractmethod,
)
from typing import (
TYPE_CHECKING,
cast,
)
import numpy as np
from pandas._typing import (
DtypeObj,
NDFrameT,
npt,
)
from pandas.util._validators import validate_percentile
from pandas.core.dtypes.common import (
is_bool_dtype,
is_numeric_dtype,
)
from pandas.core.dtypes.dtypes import (
ArrowDtype,
DatetimeTZDtype,
ExtensionDtype,
)
from pandas.core.arrays.floating import Float64Dtype
from pandas.core.reshape.concat import concat
from pandas.io.formats.format import format_percentiles
if TYPE_CHECKING:
from collections.abc import (
Callable,
Hashable,
Sequence,
)
from pandas import (
DataFrame,
Series,
)
def describe_ndframe(
*,
obj: NDFrameT,
include: str | Sequence[str] | None,
exclude: str | Sequence[str] | None,
percentiles: Sequence[float] | np.ndarray | None,
) -> NDFrameT:
"""Describe series or dataframe.
Called from pandas.core.generic.NDFrame.describe()
Parameters
----------
obj: DataFrame or Series
Either dataframe or series to be described.
include : 'all', list-like of dtypes or None (default), optional
A white list of data types to include in the result. Ignored for ``Series``.
exclude : list-like of dtypes or None (default), optional,
A black list of data types to omit from the result. Ignored for ``Series``.
percentiles : list-like of numbers, optional
The percentiles to include in the output. All should fall between 0 and 1.
The default is ``[.25, .5, .75]``, which returns the 25th, 50th, and
75th percentiles.
Returns
-------
Dataframe or series description.
"""
percentiles = _refine_percentiles(percentiles)
describer: NDFrameDescriberAbstract
if obj.ndim == 1:
describer = SeriesDescriber(
obj=cast("Series", obj),
)
else:
describer = DataFrameDescriber(
obj=cast("DataFrame", obj),
include=include,
exclude=exclude,
)
result = describer.describe(percentiles=percentiles)
return cast(NDFrameT, result)
class NDFrameDescriberAbstract(ABC):
"""Abstract class for describing dataframe or series.
Parameters
----------
obj : Series or DataFrame
Object to be described.
"""
def __init__(self, obj: DataFrame | Series) -> None:
self.obj = obj
@abstractmethod
def describe(self, percentiles: Sequence[float] | np.ndarray) -> DataFrame | Series:
"""Do describe either series or dataframe.
Parameters
----------
percentiles : list-like of numbers
The percentiles to include in the output.
"""
class SeriesDescriber(NDFrameDescriberAbstract):
"""Class responsible for creating series description."""
obj: Series
def describe(self, percentiles: Sequence[float] | np.ndarray) -> Series:
describe_func = select_describe_func(
self.obj,
)
return describe_func(self.obj, percentiles)
class DataFrameDescriber(NDFrameDescriberAbstract):
"""Class responsible for creating dataobj description.
Parameters
----------
obj : DataFrame
DataFrame to be described.
include : 'all', list-like of dtypes or None
A white list of data types to include in the result.
exclude : list-like of dtypes or None
A black list of data types to omit from the result.
"""
obj: DataFrame
def __init__(
self,
obj: DataFrame,
*,
include: str | Sequence[str] | None,
exclude: str | Sequence[str] | None,
) -> None:
self.include = include
self.exclude = exclude
if obj.ndim == 2 and obj.columns.size == 0:
raise ValueError("Cannot describe a DataFrame without columns")
super().__init__(obj)
def describe(self, percentiles: Sequence[float] | np.ndarray) -> DataFrame:
data = self._select_data()
ldesc: list[Series] = []
for _, series in data.items():
describe_func = select_describe_func(series)
ldesc.append(describe_func(series, percentiles))
col_names = reorder_columns(ldesc)
d = concat(
[x.reindex(col_names) for x in ldesc],
axis=1,
ignore_index=True,
sort=False,
)
d.columns = data.columns.copy()
return d
def _select_data(self) -> DataFrame:
"""Select columns to be described."""
if (self.include is None) and (self.exclude is None):
# when some numerics are found, keep only numerics
default_include: list[npt.DTypeLike] = [np.number, "datetime"]
data = self.obj.select_dtypes(include=default_include)
if len(data.columns) == 0:
data = self.obj
elif self.include == "all":
if self.exclude is not None:
msg = "exclude must be None when include is 'all'"
raise ValueError(msg)
data = self.obj
else:
data = self.obj.select_dtypes(
include=self.include,
exclude=self.exclude,
)
return data
def reorder_columns(ldesc: Sequence[Series]) -> list[Hashable]:
"""Set a convenient order for rows for display."""
names: list[Hashable] = []
seen_names: set[Hashable] = set()
ldesc_indexes = sorted((x.index for x in ldesc), key=len)
for idxnames in ldesc_indexes:
for name in idxnames:
if name not in seen_names:
seen_names.add(name)
names.append(name)
return names
def describe_numeric_1d(series: Series, percentiles: Sequence[float]) -> Series:
"""Describe series containing numerical data.
Parameters
----------
series : Series
Series to be described.
percentiles : list-like of numbers
The percentiles to include in the output.
"""
from pandas import Series
formatted_percentiles = format_percentiles(percentiles)
stat_index = ["count", "mean", "std", "min"] + formatted_percentiles + ["max"]
d = (
[series.count(), series.mean(), series.std(), series.min()]
+ series.quantile(percentiles).tolist()
+ [series.max()]
)
# GH#48340 - always return float on non-complex numeric data
dtype: DtypeObj | None
if isinstance(series.dtype, ExtensionDtype):
if isinstance(series.dtype, ArrowDtype):
if series.dtype.kind == "m":
# GH53001: describe timedeltas with object dtype
dtype = None
else:
import pyarrow as pa
dtype = ArrowDtype(pa.float64())
else:
dtype = Float64Dtype()
elif series.dtype.kind in "iufb":
# i.e. numeric but exclude complex dtype
dtype = np.dtype("float")
else:
dtype = None
return Series(d, index=stat_index, name=series.name, dtype=dtype)
def describe_categorical_1d(
data: Series,
percentiles_ignored: Sequence[float],
) -> Series:
"""Describe series containing categorical data.
Parameters
----------
data : Series
Series to be described.
percentiles_ignored : list-like of numbers
Ignored, but in place to unify interface.
"""
names = ["count", "unique", "top", "freq"]
objcounts = data.value_counts()
count_unique = len(objcounts[objcounts != 0])
if count_unique > 0:
top, freq = objcounts.index[0], objcounts.iloc[0]
dtype = None
else:
# If the DataFrame is empty, set 'top' and 'freq' to None
# to maintain output shape consistency
top, freq = np.nan, np.nan
dtype = "object"
result = [data.count(), count_unique, top, freq]
from pandas import Series
return Series(result, index=names, name=data.name, dtype=dtype)
def describe_timestamp_1d(data: Series, percentiles: Sequence[float]) -> Series:
"""Describe series containing datetime64 dtype.
Parameters
----------
data : Series
Series to be described.
percentiles : list-like of numbers
The percentiles to include in the output.
"""
# GH-30164
from pandas import Series
formatted_percentiles = format_percentiles(percentiles)
stat_index = ["count", "mean", "min"] + formatted_percentiles + ["max"]
d = (
[data.count(), data.mean(), data.min()]
+ data.quantile(percentiles).tolist()
+ [data.max()]
)
return Series(d, index=stat_index, name=data.name)
def select_describe_func(
data: Series,
) -> Callable:
"""Select proper function for describing series based on data type.
Parameters
----------
data : Series
Series to be described.
"""
if is_bool_dtype(data.dtype):
return describe_categorical_1d
elif is_numeric_dtype(data):
return describe_numeric_1d
elif data.dtype.kind == "M" or isinstance(data.dtype, DatetimeTZDtype):
return describe_timestamp_1d
elif data.dtype.kind == "m":
return describe_numeric_1d
else:
return describe_categorical_1d
def _refine_percentiles(
percentiles: Sequence[float] | np.ndarray | None,
) -> npt.NDArray[np.float64]:
"""
Ensure that percentiles are unique and sorted.
Parameters
----------
percentiles : list-like of numbers, optional
The percentiles to include in the output.
"""
if percentiles is None:
return np.array([0.25, 0.5, 0.75])
# explicit conversion of `percentiles` to list
percentiles = list(percentiles)
# get them all to be in [0, 1]
validate_percentile(percentiles)
if percentiles == []:
percentiles.append(0.5) # By default, if percentiles is empty then append 50th percentile.
percentiles = np.asarray(percentiles)
# sort and check for duplicates
unique_pcts = np.unique(percentiles)
assert percentiles is not None
if len(unique_pcts) < len(percentiles):
raise ValueError("percentiles cannot contain duplicates")
return unique_pcts