forked from stm32duino/Arduino_Core_STM32
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwi.c
1145 lines (1061 loc) · 34.6 KB
/
twi.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
******************************************************************************
* @file twi.c
* @author WI6LABS
* @version V1.0.0
* @date 01-August-2016
* @brief provide the TWI interface
*
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
#include "core_debug.h"
#include "twi.h"
#include "PinAF_STM32F1.h"
#ifdef __cplusplus
extern "C" {
#endif
#if defined(HAL_I2C_MODULE_ENABLED)
/* Private Defines */
/// @brief I2C timout in tick unit
#define I2C_TIMEOUT_TICK 100
#define SLAVE_MODE_TRANSMIT 0
#define SLAVE_MODE_RECEIVE 1
#define SLAVE_MODE_LISTEN 2
/* Generic definition for series requiring I2C timing calculation */
#if !defined (STM32F1xx) && !defined (STM32F2xx) && !defined (STM32F4xx) &&\
!defined (STM32L1xx)
#define I2C_TIMING
#endif
#ifdef I2C_TIMING
#ifndef I2C_VALID_TIMING_NBR
#define I2C_VALID_TIMING_NBR 8U
#endif
#define I2C_ANALOG_FILTER_DELAY_MIN 50U /* ns */
#ifndef I2C_ANALOG_FILTER_DELAY_MAX
#define I2C_ANALOG_FILTER_DELAY_MAX 260U /* ns */
#endif
#ifndef I2C_USE_ANALOG_FILTER
#define I2C_USE_ANALOG_FILTER 1U
#endif
#ifndef I2C_DIGITAL_FILTER_COEF
#define I2C_DIGITAL_FILTER_COEF 0U
#endif
#define I2C_PRESC_MAX 16U
#define I2C_SCLDEL_MAX 16U
#define I2C_SDADEL_MAX 16U
#define I2C_SCLH_MAX 256U
#define I2C_SCLL_MAX 256U
#define SEC2NSEC 1000000000UL
typedef enum {
I2C_SPEED_FREQ_STANDARD, /* 100 kHz */
I2C_SPEED_FREQ_FAST, /* 400 kHz */
I2C_SPEED_FREQ_FAST_PLUS, /* 1 MHz */
I2C_SPEED_FREQ_NUMBER /* Must be the last entry */
} i2c_speed_freq_t;
#ifdef I2C_TIMING
typedef struct {
uint32_t input_clock; /* I2C Input clock */
uint32_t timing; /* I2C timing corresponding to Input clock */
} I2C_timing_t;
static I2C_timing_t I2C_ClockTiming[I2C_SPEED_FREQ_NUMBER] = {0};
#endif
typedef struct {
uint32_t freq; /* Frequency in Hz */
uint32_t freq_min; /* Minimum frequency in Hz */
uint32_t freq_max; /* Maximum frequency in Hz */
uint16_t hddat_min; /* Minimum data hold time in ns */
uint16_t vddat_max; /* Maximum data valid time in ns */
uint16_t sudat_min; /* Minimum data setup time in ns */
uint16_t lscl_min; /* Minimum low period of the SCL clock in ns */
uint16_t hscl_min; /* Minimum high period of SCL clock in ns */
uint16_t trise; /* Rise time in ns */
uint16_t tfall; /* Fall time in ns */
uint8_t dnf; /* Digital noise filter coefficient */
} I2C_Charac_t;
static const I2C_Charac_t I2C_Charac[] = {
[I2C_SPEED_FREQ_STANDARD] =
{
.freq = 100000,
.freq_min = 80000,
.freq_max = 120000,
.hddat_min = 0,
.vddat_max = 3450,
.sudat_min = 250,
.lscl_min = 4700,
.hscl_min = 4000,
.trise = 640,
.tfall = 20,
.dnf = I2C_DIGITAL_FILTER_COEF,
},
[I2C_SPEED_FREQ_FAST] =
{
.freq = 400000,
.freq_min = 320000,
.freq_max = 480000,
.hddat_min = 0,
.vddat_max = 900,
.sudat_min = 100,
.lscl_min = 1300,
.hscl_min = 600,
.trise = 250,
.tfall = 100,
.dnf = I2C_DIGITAL_FILTER_COEF,
},
[I2C_SPEED_FREQ_FAST_PLUS] =
{
.freq = 1000000,
.freq_min = 800000,
.freq_max = 1200000,
.hddat_min = 0,
.vddat_max = 450,
.sudat_min = 50,
.lscl_min = 500,
.hscl_min = 260,
.trise = 60,
.tfall = 100,
.dnf = I2C_DIGITAL_FILTER_COEF,
}
};
#endif /* I2C_TIMING */
/* Family specific description for I2C */
typedef enum {
#if defined(I2C1_BASE)
I2C1_INDEX,
#endif
#if defined(I2C2_BASE)
I2C2_INDEX,
#endif
#if defined(I2C3_BASE)
I2C3_INDEX,
#endif
#if defined(I2C4_BASE)
I2C4_INDEX,
#endif
I2C_NUM
} i2c_index_t;
/* Private Variables */
static I2C_HandleTypeDef *i2c_handles[I2C_NUM];
#ifdef I2C_TIMING
/**
* @brief This function return the I2C clock source frequency.
* @param i2c: I2C instance
* @retval frequency in Hz
*/
static uint32_t i2c_getClkFreq(I2C_TypeDef *i2c)
{
uint32_t clkSrcFreq = 0;
#ifdef STM32H7xx
PLL3_ClocksTypeDef PLL3_Clocks;
#endif
#if defined I2C1_BASE
if (i2c == I2C1) {
switch (__HAL_RCC_GET_I2C1_SOURCE()) {
case RCC_I2C1CLKSOURCE_HSI:
clkSrcFreq = HSI_VALUE;
break;
#ifdef RCC_I2C1CLKSOURCE_SYSCLK
case RCC_I2C1CLKSOURCE_SYSCLK:
clkSrcFreq = SystemCoreClock;
break;
#endif
#if defined(RCC_I2C1CLKSOURCE_PCLK1) || defined(RCC_I2C1CLKSOURCE_D2PCLK1)
#ifdef RCC_I2C1CLKSOURCE_PCLK1
case RCC_I2C1CLKSOURCE_PCLK1:
#endif
#ifdef RCC_I2C1CLKSOURCE_D2PCLK1
case RCC_I2C1CLKSOURCE_D2PCLK1:
#endif
clkSrcFreq = HAL_RCC_GetPCLK1Freq();
break;
#endif
#ifdef RCC_I2C1CLKSOURCE_CSI
case RCC_I2C1CLKSOURCE_CSI:
clkSrcFreq = CSI_VALUE;
break;
#endif
#ifdef RCC_I2C1CLKSOURCE_PLL3
case RCC_I2C1CLKSOURCE_PLL3:
HAL_RCCEx_GetPLL3ClockFreq(&PLL3_Clocks);
clkSrcFreq = PLL3_Clocks.PLL3_R_Frequency;
break;
#endif
default:
Error_Handler();
}
}
#endif // I2C1_BASE
#if defined I2C2_BASE
if (i2c == I2C2) {
#ifdef __HAL_RCC_GET_I2C2_SOURCE
switch (__HAL_RCC_GET_I2C2_SOURCE()) {
case RCC_I2C2CLKSOURCE_HSI:
clkSrcFreq = HSI_VALUE;
break;
#ifdef RCC_I2C2CLKSOURCE_SYSCLK
case RCC_I2C2CLKSOURCE_SYSCLK:
clkSrcFreq = SystemCoreClock;
break;
#endif
#if defined(RCC_I2C2CLKSOURCE_PCLK1) || defined(RCC_I2C2CLKSOURCE_D2PCLK1)
#ifdef RCC_I2C2CLKSOURCE_PCLK1
case RCC_I2C2CLKSOURCE_PCLK1:
#endif
#ifdef RCC_I2C2CLKSOURCE_D2PCLK1
case RCC_I2C2CLKSOURCE_D2PCLK1:
#endif
clkSrcFreq = HAL_RCC_GetPCLK1Freq();
break;
#endif
#ifdef RCC_I2C2CLKSOURCE_CSI
case RCC_I2C2CLKSOURCE_CSI:
clkSrcFreq = CSI_VALUE;
break;
#endif
#ifdef RCC_I2C2CLKSOURCE_PLL3
case RCC_I2C2CLKSOURCE_PLL3:
HAL_RCCEx_GetPLL3ClockFreq(&PLL3_Clocks);
clkSrcFreq = PLL3_Clocks.PLL3_R_Frequency;
break;
#endif
default:
Error_Handler();
}
#else
/* STM32 L0/G0 I2C2 has no independent clock */
clkSrcFreq = HAL_RCC_GetPCLK1Freq();
#endif
}
#endif // I2C2_BASE
#if defined I2C3_BASE
if (i2c == I2C3) {
switch (__HAL_RCC_GET_I2C3_SOURCE()) {
case RCC_I2C3CLKSOURCE_HSI:
clkSrcFreq = HSI_VALUE;
break;
#ifdef RCC_I2C3CLKSOURCE_SYSCLK
case RCC_I2C3CLKSOURCE_SYSCLK:
clkSrcFreq = SystemCoreClock;
break;
#endif
#if defined(RCC_I2C3CLKSOURCE_PCLK1) || defined(RCC_I2C3CLKSOURCE_D2PCLK1)
#ifdef RCC_I2C3CLKSOURCE_PCLK1
case RCC_I2C3CLKSOURCE_PCLK1:
#endif
#ifdef RCC_I2C3CLKSOURCE_D2PCLK1
case RCC_I2C3CLKSOURCE_D2PCLK1:
#endif
clkSrcFreq = HAL_RCC_GetPCLK1Freq();
break;
#endif
#ifdef RCC_I2C3CLKSOURCE_CSI
case RCC_I2C3CLKSOURCE_CSI:
clkSrcFreq = CSI_VALUE;
break;
#endif
#ifdef RCC_I2C3CLKSOURCE_PLL3
case RCC_I2C3CLKSOURCE_PLL3:
HAL_RCCEx_GetPLL3ClockFreq(&PLL3_Clocks);
clkSrcFreq = PLL3_Clocks.PLL3_R_Frequency;
break;
#endif
default:
Error_Handler();
}
}
#endif // I2C3_BASE
#if defined I2C4_BASE
if (i2c == I2C4) {
switch (__HAL_RCC_GET_I2C4_SOURCE()) {
case RCC_I2C4CLKSOURCE_HSI:
clkSrcFreq = HSI_VALUE;
break;
#ifdef RCC_I2C4CLKSOURCE_SYSCLK
case RCC_I2C4CLKSOURCE_SYSCLK:
clkSrcFreq = SystemCoreClock;
break;
#endif
#ifdef RCC_I2C4CLKSOURCE_PCLK1
case RCC_I2C4CLKSOURCE_PCLK1:
clkSrcFreq = HAL_RCC_GetPCLK1Freq();
break;
#endif
#ifdef RCC_I2C4CLKSOURCE_D3PCLK1
case RCC_I2C4CLKSOURCE_D3PCLK1:
clkSrcFreq = HAL_RCCEx_GetD3PCLK1Freq();
break;
#endif
#ifdef RCC_I2C4CLKSOURCE_CSI
case RCC_I2C4CLKSOURCE_CSI:
clkSrcFreq = CSI_VALUE;
break;
#endif
#ifdef RCC_I2C4CLKSOURCE_PLL3
case RCC_I2C4CLKSOURCE_PLL3:
HAL_RCCEx_GetPLL3ClockFreq(&PLL3_Clocks);
clkSrcFreq = PLL3_Clocks.PLL3_R_Frequency;
break;
#endif
default:
Error_Handler();
}
}
#endif // I2C4_BASE
return clkSrcFreq;
}
/**
* @brief Calculate PRESC, SCLDEL, SDADEL, SCLL and SCLH and find best configuration.
* @param clkSrcFreq I2C source clock in HZ.
* @param i2c_speed I2C frequency (index).
* @retval config index (0 to I2C_VALID_TIMING_NBR], 0xFFFFFFFF for no
valid config.
*/
static uint32_t i2c_computeTiming(uint32_t clkSrcFreq, uint32_t i2c_speed)
{
uint32_t ret = 0xFFFFFFFFU;
uint32_t valid_timing_nbr = 0;
uint32_t ti2cclk;
uint32_t ti2cspeed;
uint32_t prev_error;
uint32_t dnf_delay;
uint32_t clk_min, clk_max;
uint16_t scll, sclh;
uint8_t prev_presc = I2C_PRESC_MAX;
int32_t tsdadel_min, tsdadel_max;
int32_t tscldel_min;
uint8_t presc, scldel, sdadel;
uint32_t tafdel_min, tafdel_max;
if (i2c_speed > I2C_SPEED_FREQ_NUMBER) {
return ret;
}
/* Don't compute timing if already available value for the requested speed with the same I2C input frequency */
if ((I2C_ClockTiming[i2c_speed].input_clock == clkSrcFreq) && (I2C_ClockTiming[i2c_speed].timing != 0U)) {
return I2C_ClockTiming[i2c_speed].timing;
}
I2C_ClockTiming[i2c_speed].input_clock = clkSrcFreq; // Save the I2C input clock for which we will save timing
ti2cclk = (SEC2NSEC + (clkSrcFreq / 2U)) / clkSrcFreq;
ti2cspeed = (SEC2NSEC + (I2C_Charac[i2c_speed].freq / 2U)) / I2C_Charac[i2c_speed].freq;
tafdel_min = (I2C_USE_ANALOG_FILTER == 1U) ? I2C_ANALOG_FILTER_DELAY_MIN : 0U;
tafdel_max = (I2C_USE_ANALOG_FILTER == 1U) ? I2C_ANALOG_FILTER_DELAY_MAX : 0U;
/*
* tDNF = DNF x tI2CCLK
* tPRESC = (PRESC+1) x tI2CCLK
* SDADEL >= {tf +tHD;DAT(min) - tAF(min) - tDNF - [3 x tI2CCLK]} / {tPRESC}
* SDADEL <= {tVD;DAT(max) - tr - tAF(max) - tDNF- [4 x tI2CCLK]} / {tPRESC}
*/
tsdadel_min = (int32_t)I2C_Charac[i2c_speed].tfall +
(int32_t)I2C_Charac[i2c_speed].hddat_min -
(int32_t)tafdel_min - (int32_t)(((int32_t)I2C_Charac[i2c_speed].dnf +
3) * (int32_t)ti2cclk);
tsdadel_max = (int32_t)I2C_Charac[i2c_speed].vddat_max -
(int32_t)I2C_Charac[i2c_speed].trise -
(int32_t)tafdel_max - (int32_t)(((int32_t)I2C_Charac[i2c_speed].dnf +
4) * (int32_t)ti2cclk);
/* {[tr+ tSU;DAT(min)] / [tPRESC]} - 1 <= SCLDEL */
tscldel_min = (int32_t)I2C_Charac[i2c_speed].trise +
(int32_t)I2C_Charac[i2c_speed].sudat_min;
if (tsdadel_min <= 0) {
tsdadel_min = 0;
}
if (tsdadel_max <= 0) {
tsdadel_max = 0;
}
/* tDNF = DNF x tI2CCLK */
dnf_delay = I2C_Charac[i2c_speed].dnf * ti2cclk;
clk_max = SEC2NSEC / I2C_Charac[i2c_speed].freq_min;
clk_min = SEC2NSEC / I2C_Charac[i2c_speed].freq_max;
prev_error = ti2cspeed;
for (presc = 0; presc < I2C_PRESC_MAX; presc++) {
for (scldel = 0; scldel < I2C_SCLDEL_MAX; scldel++) {
/* TSCLDEL = (SCLDEL+1) * (PRESC+1) * TI2CCLK */
uint32_t tscldel = (scldel + 1U) * (presc + 1U) * ti2cclk;
if (tscldel >= (uint32_t)tscldel_min) {
for (sdadel = 0; sdadel < I2C_SDADEL_MAX; sdadel++) {
/* TSDADEL = SDADEL * (PRESC+1) * TI2CCLK */
uint32_t tsdadel = (sdadel * (presc + 1U)) * ti2cclk;
if ((tsdadel >= (uint32_t)tsdadel_min) && (tsdadel <=
(uint32_t)tsdadel_max)) {
if (presc != prev_presc) {
valid_timing_nbr ++;
if (valid_timing_nbr >= I2C_VALID_TIMING_NBR) {
return ret;
}
/* tPRESC = (PRESC+1) x tI2CCLK*/
uint32_t tpresc = (presc + 1U) * ti2cclk;
for (scll = 0; scll < I2C_SCLL_MAX; scll++) {
/* tLOW(min) <= tAF(min) + tDNF + 2 x tI2CCLK + [(SCLL+1) x tPRESC ] */
uint32_t tscl_l = tafdel_min + dnf_delay + (2U * ti2cclk) + ((scll + 1U) * tpresc);
/* The I2CCLK period tI2CCLK must respect the following conditions:
tI2CCLK < (tLOW - tfilters) / 4 and tI2CCLK < tHIGH */
if ((tscl_l > I2C_Charac[i2c_speed].lscl_min) &&
(ti2cclk < ((tscl_l - tafdel_min - dnf_delay) / 4U))) {
for (sclh = 0; sclh < I2C_SCLH_MAX; sclh++) {
/* tHIGH(min) <= tAF(min) + tDNF + 2 x tI2CCLK + [(SCLH+1) x tPRESC] */
uint32_t tscl_h = tafdel_min + dnf_delay + (2U * ti2cclk) + ((sclh + 1U) * tpresc);
/* tSCL = tf + tLOW + tr + tHIGH */
uint32_t tscl = tscl_l + tscl_h + I2C_Charac[i2c_speed].trise +
I2C_Charac[i2c_speed].tfall;
if ((tscl >= clk_min) && (tscl <= clk_max) &&
(tscl_h >= I2C_Charac[i2c_speed].hscl_min) && (ti2cclk < tscl_h)) {
int32_t error = (int32_t)tscl - (int32_t)ti2cspeed;
if (error < 0) {
error = -error;
}
/* look for the timings with the lowest clock error */
if ((uint32_t)error < prev_error) {
prev_error = (uint32_t)error;
ret = ((presc & 0x0FU) << 28) | \
((scldel & 0x0FU) << 20) | \
((sdadel & 0x0FU) << 16) | \
((sclh & 0xFFU) << 8) | \
((scll & 0xFFU) << 0);
prev_presc = presc;
/* Save I2C Timing found for further reuse (and avoid to compute again) */
I2C_ClockTiming[i2c_speed].timing = ret;
}
}
}
}
}
}
}
}
}
}
}
return ret;
}
#endif /* I2C_TIMING */
/**
* @brief Compute I2C timing according current I2C clock source and
required I2C clock.
* @param obj : pointer to i2c_t structure
* @param frequency
Required I2C clock in Hz.
* @retval I2C timing or 0 in case of error.
*/
static uint32_t i2c_getTiming(i2c_t *obj, uint32_t frequency)
{
uint32_t ret = 0;
uint32_t i2c_speed = 0;
if (frequency <= 100000) {
i2c_speed = 100000;
} else if (frequency <= 400000) {
i2c_speed = 400000;
} else if (frequency <= 1000000) {
i2c_speed = 1000000;
}
#ifdef I2C_TIMING
if (i2c_speed != 0U) {
switch (i2c_speed) {
default:
case 100000:
#ifdef I2C_TIMING_SM
ret = I2C_TIMING_SM;
#else
ret = i2c_computeTiming(i2c_getClkFreq(obj->i2c), I2C_SPEED_FREQ_STANDARD);
#endif
break;
case 400000:
#ifdef I2C_TIMING_FM
ret = I2C_TIMING_FM;
#else
ret = i2c_computeTiming(i2c_getClkFreq(obj->i2c), I2C_SPEED_FREQ_FAST);
#endif
break;
case 1000000:
#ifdef I2C_TIMING_FMP
ret = I2C_TIMING_FMP;
#else
ret = i2c_computeTiming(i2c_getClkFreq(obj->i2c), I2C_SPEED_FREQ_FAST_PLUS);
#endif
break;
}
}
/* Kept for future if more speed are proposed */
/* uint32_t speed;
* for (speed = 0; speed <= (uint32_t)I2C_SPEED_FREQ_FAST_PLUS; speed++) {
* if ((i2c_speed >= I2C_Charac[speed].freq_min) &&
* (i2c_speed <= I2C_Charac[speed].freq_max)) {
* i2c_computeTiming(i2c_getClkFreq(obj->i2c), speed);
* break;
* }
* }
*/
#else
UNUSED(obj);
ret = i2c_speed;
#endif /* I2C_TIMING */
return ret;
}
/**
* @brief Default init and setup GPIO and I2C peripheral
* @param obj : pointer to i2c_t structure
* @retval none
*/
void i2c_init(i2c_t *obj)
{
i2c_custom_init(obj, 100000, I2C_ADDRESSINGMODE_7BIT, 0x33);
}
/**
* @brief Initialize and setup GPIO and I2C peripheral
* @param obj : pointer to i2c_t structure
* @param timing : one of the i2c_timing_e
* @param addressingMode : I2C_ADDRESSINGMODE_7BIT or I2C_ADDRESSINGMODE_10BIT
* @param ownAddress : device address
* @retval none
*/
void i2c_custom_init(i2c_t *obj, uint32_t timing, uint32_t addressingMode, uint32_t ownAddress)
{
if (obj == NULL) {
return;
}
I2C_HandleTypeDef *handle = &(obj->handle);
// Determine the I2C to use
I2C_TypeDef *i2c_sda = pinmap_peripheral(obj->sda, PinMap_I2C_SDA);
I2C_TypeDef *i2c_scl = pinmap_peripheral(obj->scl, PinMap_I2C_SCL);
//Pins SDA/SCL must not be NP
if (i2c_sda == NP || i2c_scl == NP) {
core_debug("ERROR: at least one I2C pin has no peripheral\n");
return;
}
obj->i2c = pinmap_merge_peripheral(i2c_sda, i2c_scl);
if (obj->i2c == NP) {
core_debug("ERROR: I2C pins mismatch\n");
return;
}
#if defined I2C1_BASE
// Enable I2C1 clock if not done
if (obj->i2c == I2C1) {
__HAL_RCC_I2C1_CLK_ENABLE();
__HAL_RCC_I2C1_FORCE_RESET();
__HAL_RCC_I2C1_RELEASE_RESET();
obj->irq = I2C1_EV_IRQn;
#if !defined(STM32F0xx) && !defined(STM32G0xx) && !defined(STM32L0xx)
obj->irqER = I2C1_ER_IRQn;
#endif /* !STM32F0xx && !STM32G0xx && !STM32L0xx */
i2c_handles[I2C1_INDEX] = handle;
}
#endif // I2C1_BASE
#if defined I2C2_BASE
// Enable I2C2 clock if not done
if (obj->i2c == I2C2) {
__HAL_RCC_I2C2_CLK_ENABLE();
__HAL_RCC_I2C2_FORCE_RESET();
__HAL_RCC_I2C2_RELEASE_RESET();
obj->irq = I2C2_EV_IRQn;
#if !defined(STM32F0xx) && !defined(STM32G0xx) && !defined(STM32L0xx)
obj->irqER = I2C2_ER_IRQn;
#endif /* !STM32F0xx && !STM32G0xx && !STM32L0xx */
i2c_handles[I2C2_INDEX] = handle;
}
#endif // I2C2_BASE
#if defined I2C3_BASE
// Enable I2C3 clock if not done
if (obj->i2c == I2C3) {
__HAL_RCC_I2C3_CLK_ENABLE();
__HAL_RCC_I2C3_FORCE_RESET();
__HAL_RCC_I2C3_RELEASE_RESET();
obj->irq = I2C3_EV_IRQn;
#if !defined(STM32L0xx)
obj->irqER = I2C3_ER_IRQn;
#endif /* !STM32L0xx */
i2c_handles[I2C3_INDEX] = handle;
}
#endif // I2C3_BASE
#if defined I2C4_BASE
// Enable I2C4 clock if not done
if (obj->i2c == I2C4) {
__HAL_RCC_I2C4_CLK_ENABLE();
__HAL_RCC_I2C4_FORCE_RESET();
__HAL_RCC_I2C4_RELEASE_RESET();
obj->irq = I2C4_EV_IRQn;
obj->irqER = I2C4_ER_IRQn;
i2c_handles[I2C4_INDEX] = handle;
}
#endif // I2C4_BASE
/* Configure I2C GPIO pins */
pinmap_pinout(obj->scl, PinMap_I2C_SCL);
pinmap_pinout(obj->sda, PinMap_I2C_SDA);
handle->Instance = obj->i2c;
#ifdef I2C_TIMING
handle->Init.Timing = i2c_getTiming(obj, timing);
#else
handle->Init.ClockSpeed = i2c_getTiming(obj, timing);
/* Standard mode (sm) is up to 100kHz, then it's Fast mode (fm) */
/* In fast mode duty cyble bit must be set in CCR register */
if (timing > 100000) {
handle->Init.DutyCycle = I2C_DUTYCYCLE_16_9;
} else {
handle->Init.DutyCycle = I2C_DUTYCYCLE_2;
}
#endif
handle->Init.OwnAddress1 = ownAddress;
handle->Init.OwnAddress2 = 0xFF;
handle->Init.AddressingMode = addressingMode;
handle->Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
handle->Init.GeneralCallMode = (obj->generalCall == 0) ? I2C_GENERALCALL_DISABLE : I2C_GENERALCALL_ENABLE;
handle->Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
handle->State = HAL_I2C_STATE_RESET;
HAL_NVIC_SetPriority(obj->irq, I2C_IRQ_PRIO, I2C_IRQ_SUBPRIO);
HAL_NVIC_EnableIRQ(obj->irq);
#if !defined(STM32F0xx) && !defined(STM32G0xx) && !defined(STM32L0xx)
HAL_NVIC_SetPriority(obj->irqER, I2C_IRQ_PRIO, I2C_IRQ_SUBPRIO);
HAL_NVIC_EnableIRQ(obj->irqER);
#endif /* !STM32F0xx && !STM32G0xx && !STM32L0xx */
/* Init the I2C */
if (HAL_I2C_Init(handle) != HAL_OK) {
/* Initialization Error */
Error_Handler();
}
/* Initialize default values */
obj->slaveRxNbData = 0;
obj->slaveMode = SLAVE_MODE_LISTEN;
}
/**
* @brief Initialize and setup GPIO and I2C peripheral
* @param obj : pointer to i2c_t structure
* @retval none
*/
void i2c_deinit(i2c_t *obj)
{
HAL_NVIC_DisableIRQ(obj->irq);
#if !defined(STM32F0xx) && !defined(STM32G0xx) && !defined(STM32L0xx)
HAL_NVIC_DisableIRQ(obj->irqER);
#endif /* !STM32F0xx && !STM32G0xx && !STM32L0xx */
HAL_I2C_DeInit(&(obj->handle));
}
/**
* @brief Setup transmission speed. I2C must be configured before.
* @param obj : pointer to i2c_t structure
* @param frequency : i2c transmission speed
* @retval none
*/
void i2c_setTiming(i2c_t *obj, uint32_t frequency)
{
uint32_t f = i2c_getTiming(obj, frequency);
__HAL_I2C_DISABLE(&(obj->handle));
#ifdef I2C_TIMING
obj->handle.Init.Timing = f;
#else
obj->handle.Init.ClockSpeed = f;
/* Standard mode (sm) is up to 100kHz, then it's Fast mode (fm) */
/* In fast mode duty cyble bit must be set in CCR register */
if (frequency > 100000) {
obj->handle.Init.DutyCycle = I2C_DUTYCYCLE_16_9;
} else {
obj->handle.Init.DutyCycle = I2C_DUTYCYCLE_2;
}
#endif
HAL_I2C_Init(&(obj->handle));
__HAL_I2C_ENABLE(&(obj->handle));
}
/**
* @brief Write bytes at a given address
* @param obj : pointer to i2c_t structure
* @param dev_address: specifies the address of the device.
* @param data: pointer to data to be write
* @param size: number of bytes to be write.
* @retval read status
*/
i2c_status_e i2c_master_write(i2c_t *obj, uint8_t dev_address,
uint8_t *data, uint16_t size)
{
i2c_status_e ret = I2C_ERROR;
uint32_t tickstart = HAL_GetTick();
uint32_t delta = 0;
/* When size is 0, this is usually an I2C scan / ping to check if device is there and ready */
if (size == 0) {
return i2c_IsDeviceReady(obj, dev_address, 1);
}
do {
if (HAL_I2C_Master_Transmit_IT(&(obj->handle), dev_address, data, size) == HAL_OK) {
ret = I2C_OK;
// wait for transfer completion
while ((HAL_I2C_GetState(&(obj->handle)) != HAL_I2C_STATE_READY)
&& (ret == I2C_OK)) {
delta = (HAL_GetTick() - tickstart);
uint32_t err = HAL_I2C_GetError(&(obj->handle));
if ((delta > I2C_TIMEOUT_TICK)
|| ((err & HAL_I2C_ERROR_TIMEOUT) == HAL_I2C_ERROR_TIMEOUT)) {
ret = I2C_TIMEOUT;
} else if (err != HAL_I2C_ERROR_NONE) {
ret = I2C_ERROR;
}
}
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
} while (((HAL_I2C_GetError(&(obj->handle)) & HAL_I2C_ERROR_AF) == HAL_I2C_ERROR_AF)
&& (delta < I2C_TIMEOUT_TICK));
return ret;
}
/**
* @brief Write bytes to master
* @param obj : pointer to i2c_t structure
* @param data: pointer to data to be write
* @param size: number of bytes to be write.
* @retval status
*/
i2c_status_e i2c_slave_write_IT(i2c_t *obj, uint8_t *data, uint16_t size)
{
uint8_t i = 0;
// Protection to not override the TxBuffer
if (size > I2C_TXRX_BUFFER_SIZE) {
return I2C_ERROR;
}
// Check the communication status
for (i = 0; i < size; i++) {
obj->i2cTxRxBuffer[i] = *(data + i);
}
obj->i2cTxRxBufferSize = size;
return I2C_OK;
}
/**
* @brief read bytes in master mode at a given address
* @param obj : pointer to i2c_t structure
* @param dev_address: specifies the address of the device.
* @param data: pointer to data to be read
* @param size: number of bytes to be read.
* @retval read status
*/
i2c_status_e i2c_master_read(i2c_t *obj, uint8_t dev_address, uint8_t *data, uint16_t size)
{
i2c_status_e ret = I2C_ERROR;
uint32_t tickstart = HAL_GetTick();
uint32_t delta = 0;
do {
if (HAL_I2C_Master_Receive_IT(&(obj->handle), dev_address, data, size) == HAL_OK) {
ret = I2C_OK;
// wait for transfer completion
while ((HAL_I2C_GetState(&(obj->handle)) != HAL_I2C_STATE_READY)
&& (ret == I2C_OK)) {
delta = (HAL_GetTick() - tickstart);
uint32_t err = HAL_I2C_GetError(&(obj->handle));
if ((delta > I2C_TIMEOUT_TICK)
|| ((err & HAL_I2C_ERROR_TIMEOUT) == HAL_I2C_ERROR_TIMEOUT)) {
ret = I2C_TIMEOUT;
} else if (err != HAL_I2C_ERROR_NONE) {
ret = I2C_ERROR;
}
}
}
/* When Acknowledge failure occurs (Slave don't acknowledge it's address)
Master restarts communication */
} while (((HAL_I2C_GetError(&(obj->handle)) & HAL_I2C_ERROR_AF) == HAL_I2C_ERROR_AF)
&& (delta < I2C_TIMEOUT_TICK));
return ret;
}
/**
* @brief Checks if target device is ready for communication
* @param obj : pointer to i2c_t structure
* @param devAddr: specifies the address of the device.
* @param trials : Number of trials.
* @retval status
*/
i2c_status_e i2c_IsDeviceReady(i2c_t *obj, uint8_t devAddr, uint32_t trials)
{
i2c_status_e ret = I2C_OK;
switch (HAL_I2C_IsDeviceReady(&(obj->handle), devAddr, trials, I2C_TIMEOUT_TICK)) {
case HAL_OK:
ret = I2C_OK;
break;
case HAL_TIMEOUT:
ret = I2C_TIMEOUT;
break;
case HAL_BUSY:
ret = I2C_BUSY;
break;
default:
ret = I2C_TIMEOUT;
break;
}
return ret;
}
/* Aim of the function is to get i2c_s pointer using hi2c pointer */
/* Highly inspired from magical linux kernel's "container_of" */
/* (which was not directly used since not compatible with IAR toolchain) */
i2c_t *get_i2c_obj(I2C_HandleTypeDef *hi2c)
{
struct i2c_s *obj_s;
i2c_t *obj;
obj_s = (struct i2c_s *)((char *)hi2c - offsetof(struct i2c_s, handle));
obj = (i2c_t *)((char *)obj_s - offsetof(i2c_t, i2c));
return (obj);
}
/** @brief sets function called before a slave read operation
* @param obj : pointer to i2c_t structure
* @param function: callback function to use
* @retval None
*/
void i2c_attachSlaveRxEvent(i2c_t *obj, void (*function)(uint8_t *, int))
{
if ((obj == NULL) || (function == NULL)) {
return;
}
obj->i2c_onSlaveReceive = function;
HAL_I2C_EnableListen_IT(&(obj->handle));
}
/** @brief sets function called before a slave write operation
* @param obj : pointer to i2c_t structure
* @param function: callback function to use
* @retval None
*/
void i2c_attachSlaveTxEvent(i2c_t *obj, void (*function)(void))
{
if ((obj == NULL) || (function == NULL)) {
return;
}
obj->i2c_onSlaveTransmit = function;
HAL_I2C_EnableListen_IT(&(obj->handle));
}
/**
* @brief Slave Address Match callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @param TransferDirection: Master request Transfer Direction (Write/Read), value of @ref I2C_XferOptions_definition
* @param AddrMatchCode: Address Match Code
* @retval None
*/
void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode)
{
i2c_t *obj = get_i2c_obj(hi2c);
if (AddrMatchCode == hi2c->Init.OwnAddress1) {
if (TransferDirection == I2C_DIRECTION_RECEIVE) {
obj->slaveMode = SLAVE_MODE_TRANSMIT;
if (obj->i2c_onSlaveTransmit != NULL) {
obj->i2c_onSlaveTransmit();
}
#if defined(STM32F2xx) || defined(STM32F4xx) || defined(STM32L0xx) || defined(STM32L1xx)
HAL_I2C_Slave_Seq_Transmit_IT(hi2c, (uint8_t *) obj->i2cTxRxBuffer,
obj->i2cTxRxBufferSize, I2C_LAST_FRAME);
#else
HAL_I2C_Slave_Sequential_Transmit_IT(hi2c, (uint8_t *) obj->i2cTxRxBuffer,
obj->i2cTxRxBufferSize, I2C_LAST_FRAME);
#endif
} else {
obj->slaveRxNbData = 0;
obj->slaveMode = SLAVE_MODE_RECEIVE;
/* We don't know in advance how many bytes will be sent by master so
* we'll fetch one by one until master ends the sequence */
#if defined(STM32F2xx) || defined(STM32F4xx) || defined(STM32L0xx) || defined(STM32L1xx)
HAL_I2C_Slave_Seq_Receive_IT(hi2c, (uint8_t *) & (obj->i2cTxRxBuffer[obj->slaveRxNbData]),
1, I2C_NEXT_FRAME);
#else
HAL_I2C_Slave_Sequential_Receive_IT(hi2c, (uint8_t *) & (obj->i2cTxRxBuffer[obj->slaveRxNbData]),
1, I2C_NEXT_FRAME);
#endif
}
}
}
/**
* @brief Listen Complete callback.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c)
{
i2c_t *obj = get_i2c_obj(hi2c);
/* Previous master transaction now ended, so inform upper layer if needed
* then prepare for listening to next request */
if ((obj->i2c_onSlaveReceive != NULL) &&
(obj->slaveMode == SLAVE_MODE_RECEIVE)) {
if (obj->slaveRxNbData != 0) {
obj->i2c_onSlaveReceive((uint8_t *) obj->i2cTxRxBuffer, obj->slaveRxNbData);
}
}
obj->slaveMode = SLAVE_MODE_LISTEN;
obj->slaveRxNbData = 0;
HAL_I2C_EnableListen_IT(hi2c);
}
/**
* @brief Slave RX complete callback
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None
*/
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c)
{
i2c_t *obj = get_i2c_obj(hi2c);
/* One more byte was received, store it then prepare next */
if (obj->slaveRxNbData < I2C_TXRX_BUFFER_SIZE) {
obj->slaveRxNbData++;
} else {
core_debug("ERROR: I2C Slave RX overflow\n");
}
/* Restart interrupt mode for next Byte */
if (obj->slaveMode == SLAVE_MODE_RECEIVE) {
#if defined(STM32F2xx) || defined(STM32F4xx) || defined(STM32L0xx) || defined(STM32L1xx)
HAL_I2C_Slave_Seq_Receive_IT(hi2c, (uint8_t *) & (obj->i2cTxRxBuffer[obj->slaveRxNbData]),
1, I2C_NEXT_FRAME);
#else
HAL_I2C_Slave_Sequential_Receive_IT(hi2c, (uint8_t *) & (obj->i2cTxRxBuffer[obj->slaveRxNbData]),
1, I2C_NEXT_FRAME);
#endif
}
}
/**
* @brief Slave TX complete callback
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2C.
* @retval None