forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_nlargest.py
213 lines (177 loc) · 6.95 KB
/
test_nlargest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
Note: for naming purposes, most tests are title with as e.g. "test_nlargest_foo"
but are implicitly also testing nsmallest_foo.
"""
from itertools import product
import numpy as np
import pytest
import pandas as pd
from pandas import Series
import pandas._testing as tm
main_dtypes = [
"datetime",
"datetimetz",
"timedelta",
"int8",
"int16",
"int32",
"int64",
"float32",
"float64",
"uint8",
"uint16",
"uint32",
"uint64",
]
@pytest.fixture
def s_main_dtypes():
"""
A DataFrame with many dtypes
* datetime
* datetimetz
* timedelta
* [u]int{8,16,32,64}
* float{32,64}
The columns are the name of the dtype.
"""
df = pd.DataFrame(
{
"datetime": pd.to_datetime(["2003", "2002", "2001", "2002", "2005"]),
"datetimetz": pd.to_datetime(
["2003", "2002", "2001", "2002", "2005"]
).tz_localize("US/Eastern"),
"timedelta": pd.to_timedelta(["3d", "2d", "1d", "2d", "5d"]),
}
)
for dtype in [
"int8",
"int16",
"int32",
"int64",
"float32",
"float64",
"uint8",
"uint16",
"uint32",
"uint64",
]:
df[dtype] = Series([3, 2, 1, 2, 5], dtype=dtype)
return df
@pytest.fixture(params=main_dtypes)
def s_main_dtypes_split(request, s_main_dtypes):
"""Each series in s_main_dtypes."""
return s_main_dtypes[request.param]
def assert_check_nselect_boundary(vals, dtype, method):
# helper function for 'test_boundary_{dtype}' tests
ser = Series(vals, dtype=dtype)
result = getattr(ser, method)(3)
expected_idxr = [0, 1, 2] if method == "nsmallest" else [3, 2, 1]
expected = ser.loc[expected_idxr]
tm.assert_series_equal(result, expected)
class TestSeriesNLargestNSmallest:
@pytest.mark.parametrize(
"r",
[
Series([3.0, 2, 1, 2, "5"], dtype="object"),
Series([3.0, 2, 1, 2, 5], dtype="object"),
# not supported on some archs
# Series([3., 2, 1, 2, 5], dtype='complex256'),
Series([3.0, 2, 1, 2, 5], dtype="complex128"),
Series(list("abcde")),
Series(list("abcde"), dtype="category"),
],
)
def test_nlargest_error(self, r):
dt = r.dtype
msg = f"Cannot use method 'n(larg|small)est' with dtype {dt}"
args = 2, len(r), 0, -1
methods = r.nlargest, r.nsmallest
for method, arg in product(methods, args):
with pytest.raises(TypeError, match=msg):
method(arg)
def test_nsmallest_nlargest(self, s_main_dtypes_split):
# float, int, datetime64 (use i8), timedelts64 (same),
# object that are numbers, object that are strings
ser = s_main_dtypes_split
tm.assert_series_equal(ser.nsmallest(2), ser.iloc[[2, 1]])
tm.assert_series_equal(ser.nsmallest(2, keep="last"), ser.iloc[[2, 3]])
empty = ser.iloc[0:0]
tm.assert_series_equal(ser.nsmallest(0), empty)
tm.assert_series_equal(ser.nsmallest(-1), empty)
tm.assert_series_equal(ser.nlargest(0), empty)
tm.assert_series_equal(ser.nlargest(-1), empty)
tm.assert_series_equal(ser.nsmallest(len(ser)), ser.sort_values())
tm.assert_series_equal(ser.nsmallest(len(ser) + 1), ser.sort_values())
tm.assert_series_equal(ser.nlargest(len(ser)), ser.iloc[[4, 0, 1, 3, 2]])
tm.assert_series_equal(ser.nlargest(len(ser) + 1), ser.iloc[[4, 0, 1, 3, 2]])
def test_nlargest_misc(self):
ser = Series([3.0, np.nan, 1, 2, 5])
tm.assert_series_equal(ser.nlargest(), ser.iloc[[4, 0, 3, 2]])
tm.assert_series_equal(ser.nsmallest(), ser.iloc[[2, 3, 0, 4]])
msg = 'keep must be either "first", "last"'
with pytest.raises(ValueError, match=msg):
ser.nsmallest(keep="invalid")
with pytest.raises(ValueError, match=msg):
ser.nlargest(keep="invalid")
# GH#15297
ser = Series([1] * 5, index=[1, 2, 3, 4, 5])
expected_first = Series([1] * 3, index=[1, 2, 3])
expected_last = Series([1] * 3, index=[5, 4, 3])
result = ser.nsmallest(3)
tm.assert_series_equal(result, expected_first)
result = ser.nsmallest(3, keep="last")
tm.assert_series_equal(result, expected_last)
result = ser.nlargest(3)
tm.assert_series_equal(result, expected_first)
result = ser.nlargest(3, keep="last")
tm.assert_series_equal(result, expected_last)
@pytest.mark.parametrize("n", range(1, 5))
def test_nlargest_n(self, n):
# GH 13412
ser = Series([1, 4, 3, 2], index=[0, 0, 1, 1])
result = ser.nlargest(n)
expected = ser.sort_values(ascending=False).head(n)
tm.assert_series_equal(result, expected)
result = ser.nsmallest(n)
expected = ser.sort_values().head(n)
tm.assert_series_equal(result, expected)
def test_nlargest_boundary_integer(self, nselect_method, any_int_dtype):
# GH#21426
dtype_info = np.iinfo(any_int_dtype)
min_val, max_val = dtype_info.min, dtype_info.max
vals = [min_val, min_val + 1, max_val - 1, max_val]
assert_check_nselect_boundary(vals, any_int_dtype, nselect_method)
def test_nlargest_boundary_float(self, nselect_method, float_dtype):
# GH#21426
dtype_info = np.finfo(float_dtype)
min_val, max_val = dtype_info.min, dtype_info.max
min_2nd, max_2nd = np.nextafter([min_val, max_val], 0, dtype=float_dtype)
vals = [min_val, min_2nd, max_2nd, max_val]
assert_check_nselect_boundary(vals, float_dtype, nselect_method)
@pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"])
def test_nlargest_boundary_datetimelike(self, nselect_method, dtype):
# GH#21426
# use int64 bounds and +1 to min_val since true minimum is NaT
# (include min_val/NaT at end to maintain same expected_idxr)
dtype_info = np.iinfo("int64")
min_val, max_val = dtype_info.min, dtype_info.max
vals = [min_val + 1, min_val + 2, max_val - 1, max_val, min_val]
assert_check_nselect_boundary(vals, dtype, nselect_method)
def test_nlargest_duplicate_keep_all_ties(self):
# see GH#16818
ser = Series([10, 9, 8, 7, 7, 7, 7, 6])
result = ser.nlargest(4, keep="all")
expected = Series([10, 9, 8, 7, 7, 7, 7])
tm.assert_series_equal(result, expected)
result = ser.nsmallest(2, keep="all")
expected = Series([6, 7, 7, 7, 7], index=[7, 3, 4, 5, 6])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"data,expected", [([True, False], [True]), ([True, False, True, True], [True])]
)
def test_nlargest_boolean(self, data, expected):
# GH#26154 : ensure True > False
ser = Series(data)
result = ser.nlargest(1)
expected = Series(expected)
tm.assert_series_equal(result, expected)